Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression.

نویسندگان

  • Julia E Maxson
  • Juxing Chen
  • Caroline A Enns
  • An-Sheng Zhang
چکیده

Hemojuvelin (HJV) is an important regulator of iron metabolism. Membrane-anchored HJV up-regulates expression of the iron regulatory hormone, hepcidin, through the bone morphogenic protein (BMP) signaling pathway by acting as a BMP co-receptor. HJV can be cleaved by the furin family of proprotein convertases, which releases a soluble form of HJV that suppresses BMP signaling and hepcidin expression by acting as a decoy that competes with membrane HJV for BMP ligands. Recent studies indicate that matriptase-2 binds and degrades HJV, leading to a decrease in cell surface HJV. In the present work, we show that matriptase-2 cleaves HJV at Arg(288), which produces one major soluble form of HJV. This shed form of HJV has decreased ability to bind BMP6 and does not suppress BMP6-induced hepcidin expression. These results suggest that the matriptase-2 and proprotein convertase-cleavage products have different roles in the regulation of hepcidin expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decreased hemojuvelin protein levels in mask mice lacking matriptase-2-dependent proteolytic activity.

Matriptase-2, a membrane protein encoded by the Tmprss6 gene, is a negative regulator of hepcidin expression. Although matriptase-2 has been proposed to cleave membrane hemojuvelin, we have recently found decreased hemojuvelin protein levels in Tmprss6 -/- mice. The purpose of this study was to confirm this observation by determining hemojuvelin protein levels in another strain of mice with dis...

متن کامل

Into the matrix: regulation of the iron regulatory hormone hepcidin by matriptase-2.

Matriptase-2 is a recently identified membrane-bound, cell-surface serine protease expressed primarily in liver. Mutations in matriptase-2 in mice and humans cause iron-deficiency anemia that responds poorly to iron therapy. The poor response results from an inability to decrease hepcidin production during iron deficiency. Cell culture studies reveal that matriptase-2 inhibits hepcidin inductio...

متن کامل

Effect of Erythropoietin, Iron Deficiency and Iron Overload on Liver Matriptase-2 (TMPRSS6) Protein Content in Mice and Rats

Matriptase-2 (TMPRSS6) is an important negative regulator of hepcidin expression; however, the effects of iron overload or accelerated erythropoiesis on liver TMPRSS6 protein content in vivo are largely unknown. We determined TMPRSS6 protein content in plasma membrane-enriched fractions of liver homogenates by immunoblotting, using a commercial antibody raised against the catalytic domain of TM...

متن کامل

Iron refractory iron deficiency anemia.

Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin va...

متن کامل

Immunoassay for human serum hemojuvelin.

BACKGROUND Hemojuvelin, a critical regulator of iron homeostasis, is involved in the regulation of hepcidin expression and iron homeostasis. It is expressed both as a membrane-bound form and as a soluble one. Serum hemojuvelin can be produced by secretion following furin cleavage or by proteolytic cleavage of the membrane-bound form by matriptase 2 (TMPRSS6). These forms contribute to down-regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 50  شماره 

صفحات  -

تاریخ انتشار 2010